miércoles, 15 de abril de 2009

Tipos de Memoria RAM

La Memoria RAM



Se denomina memoria a los circuitos que permiten almacenar y recuperar la información. En un sentido más amplio, puede referirse también a sistemas externos de almacenamiento, como las unidades de disco o de cinta. Memoria de acceso aleatorio o RAM (Random Access Memory) es la memoria basada en semiconductores que puede ser leída y escrita por el microprocesador u otros dispositivos de hardware. El acceso a las posiciones de almacenamiento se puede realizar en cualquier orden.

Los chips de memoria son pequeños rectángulos negros que suelen ir soldados en grupos a unas plaquitas con "pines" o contactos. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o los discos duros, es que la RAM es muchísimo más rápida, y que se borra al apagar el ordenador, no como éstos

Los principales tipos de memoria RAM utilizadas en nuestros ordenadores se dividen en DRAM, SRAM y Tag RAM. Así, la memoria DRAM (Dynamic Random Access Memory) es la que montan las placas base como memoria principal del sistema, donde se almacenan las aplicaciones en ejecución y los datos que es están gestionando en cada momento. Se refresca cientos de veces por segundo y cuanto mayor cantidad pongamos a disposición del PC mejores resultados obtendremos.

Tipos de memoria DRAM

FPM (Fast Page Mode): Memoria muy popular, ya que era la que se incluía en los antiguos 386, 486 y primeros Pentium. Alcanza velocidades de hasta 60 ns. Se encuentra en los SIMM de 30 contactos y los posteriores de 72.

EDO (Extended Data Output): La memoria EDO, a diferencia de la FPM que sólo podía acceder a un solo byte al tiempo, permite mover un bloque completo de memoria a la memoria caché del sistema, mejorando así las prestaciones globales. De mayor calidad, alcanza velocidades de hasta 45 ns. Se encuentra en los Pentium, Pentium Pro y primeros Pentium II en SIMM de 72 contactos y en los primeros DIMM de 168 contactos, funcionando a 5 y 3,3 voltios.

BEDO (Burst Extended Data Output): Diseñada originalmente para los chipset HX, permite transferir datos al procesador en cada ciclo de reloj, aunque no de forma continuada, sino a ráfagas, reduciendo los tiempos de espera del procesador, aunque sin conseguir eliminarlos del todo.

SDRAM (Synchronous DRAM): Memoria asíncrona que se sincroniza con la velocidad del procesador, pudiendo obtener información en cada ciclo de reloj, evitando así los estados de espera que se producían antes. La SDRAM es capaz de soportar las velocidades del bus a 100 y 133 MHz, alcanzando velocidades por debajo de 10 ns. Se encuentra en la práctica mayoría de los módulos DIMM de 168 contactos.

PC-100 DRAM: Es un tipo de memoria SDRAM que cumple unas estrictas normas referentes a calidad de los chips y diseño de los circuitos impresos establecidas por Intel. El objetivo es garantizar un funcionamiento estable en la memoria RAM a velocidades de bus de 100 MHz.

PC-133 DRAM: Muy parecida a la anterior y de grandes exigencias técnicas para garantizar que el módulo de memoria que la cumpla funcione correctamente a las nuevas velocidades de bus de 133 MHz que se han incorporado a los últimos Pentium III.

DRDRAM (Direct Rambus DRAM): Es un tipo de memoria de 64 bits que alcanza ráfagas de 2 ns, picos de varios Gbytes/sg y funcionan a velocidades de hasta 800 MHz. Es el complemento ideal para las tarjetas gráficas AGP, evitando los cuellos de botella entre la tarjeta gráfica y la memoria principal durante el acceso directo a memoria para el manejo de las texturas gráficas.

RAMBUS: Esta memoria es exclusiva de las Pentium 4, y trabaja a una velocidad de 400 a 800 Mhz del bus de datos

DDR SDRAM (Double Data Rate SDRAM o SDRAM II): Un tipo de memoria SDRAM mejorada que podía alcanzar velocidades de hasta 200 MHz. Cuenta con mecanismos para duplicar las prestaciones obtenidas a la velocidad del reloj del sistema. Fue soportada por ciertos chipset Socket 7, pero al no ser apoyada por Intel no está demasiado extendida.

ESDRAM (Enhanced SDRAM): Incluye una pequeña memoria estática en el interior del chip SDRAM. Con ello, las peticiones de ciertos accesos pueden ser resueltas por esta rápida memoria, aumentando las prestaciones. Se basa en un principio muy similar al de la memoria caché utilizada en los procesadores.

SLDRAM (SyncLink DRAM): Se basa, al igual que la DRDRAM, en un protocolo propietario, que separa las líneas CAS, RAS y de datos. Los tiempos de acceso no dependen de la sincronización de múltiples líneas, por lo que este tipo de memoria promete velocidades superiores a los 800 MHz, ya que además puede operar al doble de velocidad del reloj del sistema.

Memoria SRAM

Es la abreviatura de Static Random Access Memory y es la alternativa a la DRAM. No precisa de tanta electricidad como la anterior para su refresco y movimiento de las direcciones de memoria, por lo que funciona más rápida, aunque tiene un elevado precio. Hay de tres tipos:

Async SRAM: La memoria caché de los antiguos 386, 486 y primeros Pentium, asíncrona y con velocidades entre 20 y 12 ns.

Sync SRAM: Es la generación siguiente, capaz de sincronizarse con el procesador y con una velocidad entre 12 y 8,5 ns.

Pipelined SRAM: Se sincroniza también con el procesador, pero tarda en cargar los datos más que la anterior, aunque una vez cargados accede a ellos con más rapidez. Opera a velocidades entre 8 y 4,5 ns.

Memoria Tag RAM

este tipo de memoria almacena las direcciones de memoria de cada uno de los datos de la DRAM almacenados en la memoria caché del sistema. Así, si el procesador requiere un dato y encuentra su dirección en la Tag RAM, va a buscarlo inmediatamente a la caché, lo que agiliza el proceso.

Ranuras ISA
Las ranuras ISA (Industry Standard Architecture) hacen su aparición de la mano de IBM en 1980 como ranuras de expansión de 8bits (en la imagen superior), funcionando a 4.77Mhz (que es la velocidad de pos procesadores Intel 8088).
Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud.


Su verdadera utilización empieza en 1983, conociéndose como XT bus architecture.
En el año 1984 se actualiza al nuevo estándar de 16 bits, conociéndose como AT bus architecture.
En este caso se trata de una ranura (en realidad son dos ranuras unidas) de 14cm de longitud.
Básicamente es un ISA al que se le añade un segundo conector de 36 contactos (18 por cada lado). Estas nuevas ranuras ISA trabajan a 16bits y a 8Mhz (la velocidad de los Intel 80286).



Ranuras EISA
En 1988 nace el nuevo estándar EISA (Extended Industry Standard Architecture), patrocinado por el llamado Grupo de los nueve (AST, Compaq, Epson, Hewlett-Packard, NEC Corporation, Olivetti, Tandy, Wyse y Zenith), montadores de ordenadores clónicos, y en parte forzados por el desarrollo por parte de la gran gigante (al menos en aquella época) IBM, que desarrolla en 1987 el slot MCA (Micro Channel Architecture) para sus propias máquinas.



Las diferencias más apreciables con respecto al bus ISA AT son:
● Direcciones de memoria de 32 bits para CPU, DMA, y dispositivos de bus master.
● Protocolo de transmisión síncrona para transferencias de alta velocidad.
● Traducción automática de ciclos de bus entre maestros y esclavos EISA e ISA.
● Soporte de controladores de periféricos maestros inteligentes.
● 33 MB/s de velocidad de transferencia para buses maestros y dispositivos DMA.
● Interrupciones compartidas.
● Configuración automática del sistema y las tarjetas de expansión (el conocido P&P).
Los slot EISA tuvieron una vida bastante breve, ya que pronto fueron sustituidos por los nuevos estándares VESA y PCI.

Ranuras VESA
Movido más que nada por la necesidad de ofrecer unos gráficos de mayor calidad (sobre todopara el mercado de los videojuegos, que ya empezaba a ser de una importancia relevante), nace en 1989 el bus VESA
El bus VESA (Video Electronics Standards Association) es un tipo de bus de datos, utilizado sobre todo en equipos diseñados para el procesador Intel 80486. Permite por primera vez conectar directamente la tarjeta gráfica al procesador.
Este bus es compatible con el bus ISA (es decir, una tarjeta ISA se puede pinchar en una ranura VESA), pero mejora la calidad y la respuesta de las tarjetas gráficas, solucionando el problema de la insuficiencia de flujo de datos que tenían las ranuras ISA y EISA.



Su estructura consistía en una extensión del ISA de 16 bits. Las tarjetas de expansión VESA eran enormes, lo que, junto a la aparición del bus PCI, mucho más rápido en velocidad de reloj y con menor longitud y mayor versatilidad, hizo desaparecer al VESA. A pesar de su compatibilidad con las tarjetas anteriores, en la práctica, su uso se limitó casi exclusivamente a tarjetas gráficas y a algunas raras tarjetas de expasión de memoria.

Ranuras PCI
En el año 1990 se produce uno de los avances mayores en el desarrollo de los ordenadores,con la salida del bus PCI (Peripheral Component Interconnect).



Se trata de un tipo de ranura que llega hasta nuestros días (aunque hay una serie de versiones), con unas especificaciones definidas, un tamaño menor que las ranuras EISA (las ranuras PCI tienen una longitud de 8.5cm, igual que las ISA de 8bits), con unos contactos bastante más finos que éstas, pero con un número superior de contactos (98 (49 x cara) + 22 (11 x cara), lo que da un total de 120 contactos).
Con el bus PCI por primera vez se acuerda también estandarizar el tamaño de las tarjetas deexpansión (aunque este tema ha sufrido varios cambios con el tiempo y las necesidades). Eltamaño inicial acordado es de un alto de 107mm (incluida la chapita de fijación, o backplate),por un largo de 312mm. En cuanto al backplate, que se coloca al lado contrario que en las tarjetas EISA y anteriores para evitar confusiones, también hay una medida estándar (los ya nombrados 107mm), aunque hay una medida denominada de media altura, pensada para losequipos extraplanos.

Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:
● PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
● PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
● PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
● PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta
533MB/s
● PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal,pero no soporta señal de 5 voltios en las tarjetas.
● PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.

Ranuras PCIX
Las ranuras PCIX (no confundir con las ranuras PCIexpress) salen como respuesta a la necesidad de un bus de mayor velocidad. Se trata de unas ranuras bastante más largas que las PCI, con un bus de 66bits, que trabajan a 66Mhz, 100Mhz o 133Mhz (según versión). Este tipo de bus se utiliza casi exclusivamente en placas base para servidores, pero presentan el grave inconveniente (con respecto a las ranuras PCIe) de que el total de su velocidad hay que repartirla entre el número de ranuras activas, por lo que para un alto rendimiento el número de éstas es limitado.



En su máxima versión tienen una capacidad de transferencia de 1064MB/s.
Sus mayores usos son la conexión de tarjetas Ethernet Gigabit, tarjetas de red de fibra y tarjetas controladoras RAID SCSI 320 o algunas tarjetas controladoras RAID SATA.

Ranuras AGP
El puerto AGP (Accelerated Graphics Port) es desarrollado por Intel en 1996 como puerto gráfico de altas prestaciones, para solucionar el cuello de botella que se creaba en las gráficas PCI. Sus especificaciones parten de las del bus PCI 2.1, tratándose de un bus de 32bits.



Con el tiempo has salido las siguientes versiones:
● AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
● AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
● AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
● AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.
Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base.
Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.


Las primeras (AGP 1X y 2X) llevaban dicha pestaña en la parte más próxima al borde de la placa base (imagen 1), mientras que las actuales (AGP 8X compatibles con 4X) lo llevan en la parte más alejada de dicho borde (imagen 2).
Existen dos tipos más de ranuras: Unas que no llevan esta muesca de control (imagen 3) y otras que llevan las dos muescas de control. En estos casos se trata de ranuras compatibles con AGP 1X, 2X y 4X (las ranuras compatibles con AGP 4X - 8X llevan siempre la pestaña de control).
Es muy importante la posición de esta muesca, ya que determina los voltajes suministrados,impidiendo que se instalen tarjetas que no soportan algunos voltajes y podrían llegar a quemarse.
Con la aparición del puerto PCIe en 2004, y sobre todo desde 2006, el puerto AGP cada vez está siendo más abandonado, siendo ya pocas las gráficas que se fabrican bajo este estándar.
A la limitación de no permitir nada más que una ranura AGP en placa base se suma la de la imposibilidad (por diferencia de velocidades y bus) de usar en este puerto sistemas de memoria gráfica compartida, como es el caso de TurboCaché e HyperMemory.


Ranuras PCI-Express
Las ranuras PCIe (PCI-Express) nacen en 2004 como respuesta a la necesidad de un bus más rápido que los PCI o los AGP (para gráficas en este caso).
Su empleo más conocido es precisamente éste, el de slot para tarjetas gráficas (en su variante PCIe x16), pero no es la única versión que hay de este puerto, que poco a poco se va imponiendo en el mercado, y que, sobre todo a partir de 2006, ha desbancado prácticamente al puerto AGP en tarjetas gráficas.



Entre sus ventajas cuenta la de poder instalar dos tarjetas gráficas en paralelo (sistemas SLI o CrossFire) o la de poder utilizar memoria compartida (sistemas TurboCaché o HyperMemory), además de un mayor ancho de banda, mayor suministro de energía (hasta 150 watios).

Este tipo de ranuras no debemos confundirlas con las PCIX, ya que mientras que éstas son una extensión del estándar PCI, las PCIe tienen un desarrollo totalmente diferente.
El bus de este puerto está estructurado como enlaces punto a punto, full-duplex, trabajando en serie. En PCIe 1.1 (el más común en la actualidad) cada enlace transporta 250 MB/s en cada dirección. PCIE 2.0 dobla esta tasa y PCIE 3.0 la dobla de nuevo.
Cada slot de expansión lleva 1, 2, 4, 8, 16 o 32 enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces
Los tipos de ranuras PCIe que más se utilizan en la actualidad son los siguientes:
● PCIe x1: 250MB/s
● PCIe x4: 1GB/s (250MB/s x 4)
● PCIe x16: 4GB/s (250MB/s x 16)
Como podemos ver, las ranuras PCIe utilizadas para tarjetas gráficas (las x16) duplican (en su estándar actual, el 1.1) la velocidad de transmisión de los actuales puertos AGP. Es precisamente este mayor ancho de banda y velocidad el que permite a las nuevas tarjetas gráficas PCIe utilizar memoria compartida, ya que la velocidad es la suficiente como para comunicarse con la RAM a una velocidad aceptable para este fin.
Cada vez son más habituales las tarjetas que utilizan este tipo de ranuras, no sólo tarjetas gráficas, sino de otro tipo, como tarjetas WiFi, PCiCard, etc.
Incluso, dado que cada vez se instalan menos ranuras PCI en las placas base, existen
adaptadores PCIe x1 - PCI, que facilitan la colocación de tarjetas PCI (eso sí, de perfil bajo) en equipos con pocas ranuras de éste tipo disponibles.




martes, 14 de abril de 2009

Los Procesadores y su evolución.

La arquitectura CISC.
Fue la primera tecnología de CPUs con la que la maquina PC se dio a conocer mundialmente. Adoptada por Intel, se coloco en las primitivas PC (procesador 8088) que fueron lanzadas bajo la marca IBM el 12 de Agosto de 1981. Su sistema de trabajo se basa en la Microprogramación. Dicha técnica consiste en hacer que cada instrucción sea interpretada por un microprograma localizado en una sección de memoria en el circuito integrado del Microprocesador. A su vez las instrucciones compuestas se decodifican para ser ejecutadas por micro instrucciones almacenadas en una Rom interna. Las operaciones se realizan al ritmo de los ciclos de un reloj.
Considerando la extraordinaria cantidad de instrucciones que la CPU puede manejar, la construcción de una CPU con arquitectura CISC es realmente compleja. A este grupo pertenecen los microprocesadores populares utilizados en PC de escritorio y laptops.
El origen de la arquitectura CISC se remonta a los inicios de la programación ubicada en los años 60 y 70. Para contrarrestar la crisis del software de ese entonces, empresas electrónicas fabricantes de hardware pensaron que una buena solución era crear una CPU con un amplio y detallado manejo de instrucciones, a fin de que los programas fueran mas sencillos. Los programadores en consecuencia crearon multitud de programas para esa arquitectura. La posterior masificación de los PCs, permitió que el mercado fuera luego copado de software creado para procesadores CISC.


Entre las bondades de CISC destacan las siguientes: 1. Reduce la dificultad de crear compiladores. 2. Permite reducir el costo total del sistema. 3. Reduce los costos de creación de Software. 4. Mejora la compactación de código. 5. Facilita la depuración de errores (debugging).



La arquitectura RISC.
Ha sido la consecuencia evolutiva de las CPU. Como su nombre lo indica, se trata de microprocesadores con un conjunto de instrucciones muy reducidas en contraposición a CISC. ¿Que ventaja se deriva de esta tecnología?. Veamos: 1. La CPU trabaja mas rápido al utilizar menos ciclos de reloj para cumplir sus funciones (ejecutar instrucciones). 2. Utiliza un sistema de direcciones no destructivas en Ram. Eso significa que a diferencia de CISC, RISC conserva después de realizar sus operaciones en memoria los dos operandos y su resultado (total tres direcciones), lo que facilita a los compiladores conservar llenos los 'pipelines' (conductos) de la CPU para utilizarlos concurrentemente y reducir la ejecución de nuevas operaciones. 3. Cada instrucción puede ser ejecutada en un solo ciclo de la CPU (máxima velocidad y eficiencia).
Considerada como una innovación tecnológica creada a partir del análisis de la primitiva arquitectura Cisc, RISC ha dado origen a la aparición de Microprocesadores poderosos cuya principal aplicación ha sido el trabajo en las grandes máquinas (servidores ), aunque también han llegado a posicionarse en ciertas maquinas desktop, computadoras de mano, maquinas de juegos, y otros artefactos electrónicos domésticos.


RISC vs CISC.


Partiendo de lo expuesto, habría que evaluar las ventajas de ambas arquitecturas para tomar decisiones sobre la escogencia de una u otra a la hora de diseñar un sistema. Risc es más rápida, pero mas costosa. Hablando en términos de costo hay que pensar que Risc utiliza mas la circuiteria (comandos hardware o circuitos electrónicos) para ejecutar operaciones directas (el microprocesador esta mas libre de carga), en tanto que CISC utiliza micro código ejecutado por el microprocesador lo que la hace mas económica y mas lenta también (debido a la carga que soporta el microprocesador).



Hay mas software de uso general para la plataforma CISC. Pero la exigencia de la informática demanda periódicamente mayor velocidad y administración de espacio en Ram y discos duros, area en la que ambas arquitecturas deben seguir innovando. Dado que CISC es mas popular a nivel de PCs, las innovaciones en esta categoría son mas numerosas (nuevas interfaces, puertos, nuevos buses y velocidades de transmisión). Técnicamente hablando, el rendimiento en RISC basado en la menor cantidad de carga de instrucciones en el microprocesador compensa a la mayor cantidad de código en software que es necesario utilizar, por lo que su arquitectura se considera mas potente que CISC.

Evolución del microprocesador
1971: Intel 4004. Nota: Fue el primer microprocesador comercial. Salió al
mercado el 15 de noviembre de 1971.
1972: Intel 8008
1974: Intel 8080, Intel 8085
1975: Signetics 2650, MOS 6502, Motorola 6800
1976: Zilog Z80
1978: Intel 8086, Motorola 68000
1979: Intel 8088
1982: Intel 80286, Motorola 68020
1985: Intel 80386, Motorola 68020, AMD80386
1987: Motorola 68030
1989: Intel 80486, Motorola 68040, AMD80486
1993: Intel Pentium, Motorola 68060, AMD K5, MIPS R10000
1995: Intel Pentium Pro
1997: Intel Pentium II, AMD K6, PowerPC G3, MIPS R120007
1999: Intel Pentium III, AMD K6-2, PowerPC G4
2000: Intel Pentium 4, Intel Itanium 2, AMD Athlon XP, AMD Duron, MIPS R14000
2003: PowerPC G5
2004: Intel Pentium M
2005: Intel Pentium D, Intel Extreme Edition con hyper threading, Intel Core
Duo, AMD Athlon 64, AMD Athlon 64 X2, AMD Sempron 128.
2006: Intel Core 2 Duo, Intel Core 2 Extreme, AMD Athlon FX
2007: Intel Core 2 Quad, AMD Quad Core, AMD Quad FX


martes, 31 de marzo de 2009

ACTIVIDAD A REALIZAR


Resolver:
1) Se dispone de cuatro resistencias: 4 W, 6 W, 8 W y 10 W, calcular la resistencia total si:
a – En serie.
b – En paralelo.
Al aplicarse entre sus extremos una diferencia de potencial de 40 V, ¿cuál es la intensidad de la corriente para cada una en cada caso?


a - En serie




b- En paralelo


2) Sabiendo que R1 = 60 W, R2 = 40 W, R3 = 30 W e I = 5 A, calcular V AB según el gráfico.
Rta.: 385,5 V
3) Utilizando el gráfico anterior, y sabiendo que: R2 = 15 W, R3 = 12 W, V AB = 220 V e I = 10 A, calcular R1.
Rta.: 385,5 V




4) Sabiendo que R2 = 40 W, R3 = 25 W, I2 = 0.5 A y V AB = 50 V, calcular R1 según el gráfico.
Rta.: 23 W


5) Calcular la intensidad de la corriente que circula por un circuito conectado a cuatro pilas de 1,5 V c/u, conectadas en serie, si posee dos resistencias, de 8 W y 12 W, conectadas en serie, y otras tres conectadas en paralelo, de 8 W, 14 W, y 20 W, sabiendo que la resistencia interna de cada pila es de 0,3 W.
Rta.: 0,24 A


Codigo de colores de los Capacitores

Determinar el valor de un capacitor por medio del código de colores no es difícil y se rea se realiza sin problemas.
Al igual que en los resistores este código permite de manera fácil establecer su valor

El código 101 de los capacitores: El código 101 es muy utilizado en capacitores cerámicos. Muchos de ellos que tienen su valor impreso, como los de valores de 1 uF o más Donde: uF = microfaradio Ejemplo: 47 uF, 100 uF, 22 uF, etc. Para capacitores de menos de 1 uF, la unidad de medida es el pF (picoFaradio) y se expresa con una cifra de 3 números. Los dos primeros números expresan su significado por si mismos, pero el tercero expresa el valor multiplicador de los dos primeros. Ver la siguiente tabla.
Ejemplo: Un capacitor que tenga impreso el número 103 significa que su valor es 10 + 1000 pF = 10,000 pF. Ver que 1000 tiene 3 ceros (el tercer número impreso). En otras palabras 10 más 3 ceros = 10,000 pF El significado del tercer número se muestra en la tabla siguiente. Después del tercer número aparece muchas veces una letra que indica la tolerancia del capacitor expresada en porcentaje (algo parecido a la tolerancia en las resistores). Ver el párrafo siguiente Tabla de tolerancia del código 101 de los capacitores La siguiente tabla nos muestra las distintas letras y su significado (porcentaje) Ejemplo: Un capacitor tiene impreso lo siguiente:
104H
104 significa 10 + 4 ceros = 10,000 pFH = +/- 3% de tolerancia.
474J
474 significa 47 + 4 ceros = 470,000 pF,J = +/- 5% de tolerancia.
470.000pF = 470nF = 0.47µF
Algunos capacitores tiene impreso directamente sobre ellos el valor de 0.1 o 0.01, lo que sindica 0.1 uF o 0.01 uF

Código de Colores de Resistencias

Los resistores son fabricados en una gran variedad de formas y tamaños. En las más grandes, el valor del resistor se imprime directamente en el cuerpo del mismo, pero en los más pequeños no es posible. Para poder obtener con facilidad el valor de la resistencia / resistor se utiliza el código de colores Sobre estos resistores se pintan unas bandas de colores. Cada color representa un número que se utiliza para obtener el valor final del resistor. Las dos primeras bandas indican las dos primeras cifras del valor del resistor, la tercera banda indica cuantos ceros hay que aumentarle al valor anterior para obtener el valor final de la resistor. La cuarta banda nos indica la tolerancia y si hay quinta banda, ésta nos indica su confiabilidad.
Ejemplo:Si un resistor tiene las siguiente bandas de colores:

rojo amarillo verde oro
2 4 5 +/- 5 %


El resistor tiene un valor de 2400,000 Ohmios +/- 5 %.El valor máximo de este resistor es: 25200,000 ΩEl valor mínimo de este resistor es: 22800,000 ΩEl resistor puede tener cualquier valor entre el máximo y mínimo calculados.

sábado, 28 de marzo de 2009

Tipos de Diodos

Tipos de Diodos

Diodo BARITT
(Del inglés: BARrier Injected Transit Time)
Diodo semejante al diodo IMPATT donde los portadores de carga llamados a atravesar la región de deplexión no provienen de una avalancha sino que son engendrados por inyección de portadores minoritarios en uniones polarizadas en el sentido de la conducción.
Diodo de avalancha
Diodo de rectificación en el que, mediante una técnica apropiada, se reparte la ruptura inversa, debida al fenómeno de avalancha, en todo el volumen de la unión. El diodo soporta, así, grandes corrientes en conducción inversa sin destruirse.

Diodo de capacidad variable (VARACTOR o VARICAP)
Diodo semiconductor con polarización inversa cuya capacidad entre los terminales disminuye en función de la tensión inversa aplicada entre sus extremos.
Diodo de conmutación
Diodo semiconductor diseñado para presentar una transición rápida entre el estado de conducción y el estado de bloqueo, y a la inversa.

Diodo rectificador.
Diodo de potencia media o alta que se utiliza para rectificar las corrientes alternas.

Diodo semiconductor.
Diodo que permite el paso de la corriente de su zona p, rica en huecos, a su zona n, rica en electrones.

Diodo de señal
Diodo semiconductor empleado para la detección o el tratamiento de una señal eléctrica de baja potencia.

Diodo de unión
Diodo formado por la unión de un material semiconductor de tipo n y otro semiconductor de tipo p.

Diodo Esaki
Ver diodo túnel

Diodo Gunn
Dispositivo semiconductor impropiamente calificado de diodo ya que no contiene una unión sino una sucesión de tres capas de tipo n más o menos dopadas. En presencia de campos eléctricos elevados, el diodo Gunn es escenario de oscilaciones a muy alta frecuencia.


Diodo IMPATT
(Del inglés: IMPAct Avalanche and Transit Time)
Diodo cuyo funcionamiento asocia la multiplicación por avalancha de los portadores de carga y su tiempo de propagación en la unión. Esto conduce, para ciertas frecuencias muy elevadas, a una resistencia negativa que permite utilizar el diodo en modo amplificador o en modo oscilador.

Diodo láser
Diodo electroluminescente (LED) cuya estructura contiene una cavidad óptica y que está concebido de modo que permita la emisión estimulada, y por tanto la radiación de una onda luminosa quasi-monocromática y coherente (láser).

Diodo PIN
(Del inglés P region-Intrinsic region-N region)
Unión pn semiconductora que posee dos regiones, una fuertemente dopada n, representada como n++, y otra fuertemente dopada p, representada por p++, y una zona intrínseca de dopado muy débil.


Diodo Schottky
Diodo formado por un contacto entre un semiconductor y un metal, lo que elimina el almacenamiento de carga y el tiempo de recuperación. Un diodo Schottky puede rectificar corrientes de frecuencia superior a 300 MHz.

Diodo Schokley
Diodo de cuatro capas p-n-p-n utilizado en los circuitos de conmutación rápida. Además, la tensión directa de este diodo es más baja que en la de un diodo semiconductor de dos regiones.

Diodo TRAPPAT
(Del inglés, TRAPped Plasma Avalanche Transit time)
Diodo de hiperfrecuencia de semiconductores que, cuando su unión se polariza en avalancha, presenta una resistencia negativa a frecuencias inferiores al dominio de frecuencias correspondiente al tiempo de tránsito del diodo. Esta resistencia negativa se debe a la generación y desaparición de un plasma de electrones y huecos que resultan de la íntima interacción entre el diodo y una cavidad de hiperfrecuencias de resonancias múltiples.

Diodo túnel
Diodo semiconductor que tiene una unión pn, en la cual se produce el efecto túnel que da origen a una conductancia diferencial negativa en un cierto intervalo de la característica corriente-tensión.
La presencia del tramo de resistencia negativa permite su utilización como componente activo (amplificador/oscilador).

Diodo unitúnel
Diodo túnel cuyas corrientes de pico y valle son aproximadamente iguales.

Diodo Zener
Diodo optimizado, mediante la elección del índice de dopado, para su funcionamiento en una región de ruptura inversa, a una tensión ampliamente independiente de la intensidad. Los diodos Zener se utilizan en reguladores de tensión.